

Molecular dynamics simulations of radiation damage and recovery in high temperature superconductors

IRradiation Effects on HTS for Fusion – Arona, Italy, Nov 2023 R. Gray, M. Sanjeev, A. Dickson and S. T. Murphy (<u>samuel.murphy@lancaster.ac.uk</u>)

Radiation damage in HTS materials

Fig 1: Plot showing how the critical current of different superconducting tapes changes as a function of neutron fluence (Fischer *et al.* SUST 31 (2018) 044006).

Fig 2: Plot showing the decrease of Tc a function of neutron fluence (Chudy *et al.* SUST 25 (2012) 075017).

TEM observation of a cascade

Fig 3: High resolution TEM image of cascade damage in HTS (Oxford).

Radiation damage in HTS materials

Fig 4: Recovery of the critical temperature as a function of annealing temperature (Unterrainer *et al.* SUST 35 (2022) 04LT01).

Lancaster 🎦 University

There is a general consensus that there is some recovery of superconducting properties upon annealing.

The radiation damage process

Fig 5: An schematic of the irradiation damage process (Nordlund *et al*. J. Nucl. Mater. 512 (2018) 450).

The multiscale modelling approach

Fig 6: The multiscale modelling approach for fusion (Gilbert *et al*. J. Nucl. Mater. 554 (2021) 153113.

Crystal structure of YBa₂Cu₃O₇

Early atomistic simulation of HTS materials

• The first atomistic simulations of HTS appeared very early on.

PHYSI covering cond	CAL RE	EVIEW and materials p	B bhysics									
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Editorial ⁻	Team	٣	
Atomi	stic sim	ulation c	of ionic ar	nd elect	ronic de	fects in	YBa ₂	$\mathrm{Cu}_3\mathrm{O}_7$				
Roger C. Phys. Rev	Baetzold 4. B 38 , 11304	– Published	1 December 198	38							¥ 🖪 ·	🕻 More
Article	References	Citing A	rticles (99)	PDF	Export Citation							
>	ABS An emp ionic d known	TRACT pirical two-boc efect propertie potentials and	ly potential mode is of orthorhombi I calculated poter	I has been de c ${ m YBa_2Cu_3O_7}$ ntials and fits t	veloped in orde . The potential he crystal struc	er to describe model was de cture to better	the electron erived startin r than 0.03 /	– nic and ng from Å for the	ls V 1	ssue /ol. 38, ls 988	ss. 16 — 1 Dece	mber
	major b at the o oxyger prefere Ga ³⁺ c	bonds. Oxygen chain oxygen io plane. Divale ontially at the C lissolve in the	h vacancy formation site 1. Hole transition site 1. Hole transition site 1. Hole transition site 2. u^{2+} plane site 2. crystal at the charge site 2.	on and hole tr apping on Cu^2 uch as Ni^{2+} , 2 On the other I in Cu^{2+} site 1	apping as a loc ⁺ ions is most f $2n^{2+}$, and Cd^{2+} hand, trivalent i along with the	calized polaro favorable for i can dissolve mpurities suc incorporation	n are most $\frac{1}{2}$ ons in the cryst in the cryst h as Al^{3+} , l of oxygen	favorable copper- tal Fe ³⁺ , and ions.		Re	use & Permissio	ns

Fig 8: An early paper on atomistic simulation of YBa₂Cu₃O₇ (Baetzold, Phys. Rev. B 38 (1988) 11304.

Point defects in YBa₂Cu₃O₇ from DFT

- Determine defect formation energies using DFT in the CASTEP code
 - Simulation parameters
 - GGA functional (PBE)
 - Ultrasoft pseudopotential with a cutoff of 600 eV
 - k-points 8x8x4 in the unitcell
 - Defect calculations in 4x4x1 supercell
 - Volume kept constant during defect simulation

Lattice parameters and elastic constants

	DFT	Lit
a /Å	3.840	3.821
b /Å	3.919	3.884
c /Å	11.830	11.677
C_{11}/GPa	215.97	211-234
C_{12} /GPa	109.24	37-132
C_{13}/GPa	58.03	71-100
C_{22} /GPa	232.40	230-268
C ₃₃ /GPa	142.55	138-186
C ₄₄ /GPa	51.13	35-61
C_{55} /GPa	41.19	33-50
C ₆₆ /GPa	81.72	57-97

Vacancy defects in YBa₂Cu₃O₇

Formation energies for vacancy defects in eV

Defect	Rich	Poor
V _Y	10.82	-12.49
V_Ba	7.17	-4.51
V _{Cu1}	2.15	-5.63
V _{Cu2}	1.76	-6.03
V ₀₁	1.01	-2.33
V _{O2}	1.6	-1.74
V _{O3}	1.71	-1.62
V _{O4}	0.88	-2.45

Antisite defects in YBa₂Cu₃O₇

Formation energies for antisite defects in eV

Defect	Rich	Poor
Ba _y	4.34	-7.34
Y_Ba	-2.81	8.87
Ba _{Cu1}	-1.56	2.34
Ba _{Cu2}	-0.63	3.27
Cu _{Ba}	5.70	1.80
Cu _Y	9.55	-6.03
Y _{Cu1}	4.97	10.60
Y _{Cu2}	-6.17	9.41

Interstitial defects in YBa₂Cu₃O₇

Formation energies for interstitial defects in eV. All chemical potentials are in the rich state.

Site	Ο	Y Ba		Cu
1	2.44	-0.31	1.84	1.52
2	0.26	-1.94	0.55	2.60
3	2.27	-1.61	2.73	1.33
4	0.27	-1.31	0.55	1.81
5	0.1	-1.63	3.06	2.91
6	0.1	1.65	3.89	2.49
7	0.1	3.01	5.55	3.27

Fig 11: Interstitial sites in YBa₂Cu₃O₇.

Intrinsic defect processes

Reaction energies for the intrinsic defect processes in YBa₂Cu₃O₇ (Normalised per defect)

Reaction	Energy /eV
$O_O \rightarrow O_i + V_O$	0.49
$Y_Y \to Y_i + V_Y$	4.46
$Ba_{Ba} \rightarrow Ba_i + V_{Ba}$	3.86
$Cu_{Cu} \rightarrow Cu_i + Cu_Y$	3.08
$Y_Y + 2Ba_{Ba} + 3Cu_{Cu} + \rightarrow V_Y + 2V_{Ba} + 3V_{Cu} + 7V_0 + YBa_2Cu_3O_7$	1.02
$Y_Y + Ba_{Ba} \to Ba_Y + Y_{Ba}$	0.76
$Y_Y + Cu_{Cu} \to Cu_Y + Y_{Cu}$	1.69
$Cu_{Cu} + Ba_{Ba} \rightarrow Ba_{Cu} + Cu_{Ba}$	2.07

Oxygen vacancy clustering

Fig 12: Plot showing the defect formation energy per oxygen vacancy for binary V_0 clusters in YBa₂Cu₃O₇.

Oxygen vacancy clustering

Fig 13: Simulation supercell showing the positions of lowest energy V_0 clusters in $YBa_2Cu_3O_7$.

Point defect model – Cu-poor conditions

Fig 14: Brouwer diagram showing the defect chemistry of YBa₂Cu₃O₇ under Cupor conditions at 700 K.

Point defect model – Cu-poor conditions

Fig 15: Plot showing how the oxygen stoichiometry variers with oxygen partial pressure and temperature compared to experiment of Yamaguchi *et al*. J. Appl. Phys. 27 (1988) L179.

Simulation of radiation damage using molecular dynamics

 Use Newton's equations of motion to evolve atoms in time, i.e.:

F = ma

- To represent transfer of energy from a neutron rescale velocity of primary knock-on atom (pka).
- Advantages
 - Atomic level insight
 - Includes recombination
 - Can control temperature

Fig 16: Illustration of a displacement cascade.

Empirical potential

 Need a potential model to describe the interactions between ions.

$$E^{Coul} = \frac{q_i q_j}{4\pi\varepsilon_0 r} \dots$$
$$+A \exp\left(-\frac{r}{\rho}\right) - \frac{C}{r^6}$$

 Where, q_i and q_j are the charges on the ions and A, ρ and C are potential parameters that need to be derived.

Fig 17: A typical Buckingham potential.

Previous cascades in YBa₂Cu₃O₇

Fig 18: 500 eV O1 pka in YBa₂Cu₃O₇ (Cui *et al*. Nucl. Instrum. Methods Phys. Res. B 91 (1994) 374–7).

Previous cascades in YBa₂Cu₃O₇

Fig 19: Comparison of 80 K (left) and 423 K 10 keV (right) from MD simulations (Sorbom PhD Thesis 2017).

A potential problem

- If we explore the charges on the ions more closely we can see that to achieve charge neutrality the Cu ions must take both the +2 and +3 charge states.
- As charges are assigned at the start of the simulation, if a Cu ion switches sites during the damage process we will end up with a Cu⁺³ ion on a Cu⁺² site and vice versa.

Derive a new potential

Lancaster 1988 University

- New potential fitted to properties derived from DFT:
 - Lattice parameters
 - Elastic Constants
 - Thermal Expansion
 - Ensure no negative phonons
- Potential fitted using a combination of a 'particle swarm' and a Nelder Mead Simplex in the PProFit package.

4.10

Reaction energies for the intrinsic defect processes in YBa₂Cu₃O₇ (Normalised per defect)

Reaction	Potential /eV	DFT /eV
$O_0 \rightarrow O_i + V_0$	0.48	0.49
$Y_Y \to Y_i + V_Y$	5.65	4.46
$Ba_{Ba} \rightarrow Ba_i + V_{Ba}$	4.59	3.86
$Cu_{Cu} \rightarrow Cu_i + Cu_Y$	2.79	3.08
$Y_Y + Ba_{Ba} \to Ba_Y + Y_{Ba}$	1.04	0.76
$Y_Y + Cu_{Cu} \to Cu_Y + Y_{Cu}$	2.27	1.69
$Cu_{Cu} + Ba_{Ba} \rightarrow Ba_{Cu} + Cu_{Ba}$	2.16	2.07

Some notable differences

Comparison of oxygen vacancy defects

Site	Potential /eV	DFT /eV
01	10.30	1.01
02	9.45	1.6
03	9.38	1.71
04	10.34	0.88

Some notable differences

Comparison of oxygen interstitial defects

Site	Potential /eV	DFT /eV
1	-6.74	2.14
2	-8.42	0.26
3	-1.57	2.27
4	-3.34	0.27
5	-5.51	0.11
6	-1.15	0.1
7	-0.99	0.11

 $YBa_2Cu_3O_7$.

Threshold Displacement Energies

• Threshold displacement energies demonstrate a wide distribution:

Comparison of oxygen interstitial defects

	X	Y	Z	ху	yz	yz
01	9.14	12.95	15.11	17.43	19.92	15.11
02	12.95	25.39	12.95	25.39	15.11	67.34
03	15.11	12.95	12.95	17.43	25.39	17.43
04	15.11	17.43	38.32	15.11	2.5	22.57
Cu1	9.96	9.96	23.79	13.91	6.67	
Cu2	9.96	29.72	29.72	36.31	9.96	13.91
Ва	78.46	30.07	51.42	4.45	51.42	30.07
Y	33.28	33.28	50.80	33.28	41.58	41.58

Threshold Displacement Energies

• Given the importance of the threshold displacement energies we have a project to explore these using *ab initio* MD.

Fig 21: 30 eV displacement of an oxygen ion.

Fig 22: A Ba cascade in YBa₂Cu₃O₇.

Fig 23: Evolution of a 50 keV Ba pka.

Fig 24: Snapshots of a 5 keV Ba pka in YBa₂Cu₃O₇.

Fig 25: Number of vacancy defects by species as a function of time in YBa₂Cu₃O₇.

Fig 26: Number of vacancy defects as a function of time for different directions $YBa_2Cu_3O_7$.

Fig 27: Number of antisite defects as a function of time for different directions $YBa_2Cu_3O_7$.

Fig 28: Atom positions folded back into the unitcell at 5.4 ps during a 5 keV cascade at 25 K.

Fig 29: Location of starting positions of atoms found on the interstitial 2 site.

Fig 30: Number of vacancy defects created at different temperatures.

Oxygen diffusion

Fig 31: Showing the number of vacancies as a function of time for 25 K and 360 K cascades annealed at 300 K. Data averaged over two data sets with standard deviation shown as shaded region.

Vacancies annealed for each temperature of damage cascade

Fig 32. Showing the number of total Ba, Y, and Cu vacancies as a function of time for 25 K and 360 K cascades annealed at 300 K and 600 K. Data averaged over two data sets with standard deviation shown as shaded region.

Vacancies per type for 25 K cascade ^L annealed at 600 K

Fig 32: Showing the number of total Ba, Y, and Cu vacancies as a function of time for 25 K and 360 K cascades annealed at 600 K. Data averaged over two data sets with standard deviation shown as shaded region.

- Defect chemistry dominated by oxygen vacancy defects.
- Antisite defect processes have relatively low energies, which suggests they are relatively common.
- Developed a new potential for use in MD simulations that allows Cu to switch between the Cu1 and Cu2 sites without consequence.
- Cascades result in an amorphous core surrounded by planar Cu and O defect rich regions.
- Very low levels of defect recombination.
- Population of interstitial 2 site and vacancy defects in the nearby oxygen 1 and 4 sites, means the planar regions are in the CuO-chains.
- Remnant defect population NOT dictated by thermodynamics.
- More remnant defects in simulations at 360 K than 25 K.
- We see some recombination of cations from cascades performed at low temperature that is not evident if the cascade occurred at high temperature.

Many thanks to everyone for their attention!

Vacancy count per type

Fig 32: Showing the number of vacancies per particle type (Ba, Y, and Cu) as a function of time for 25 K and 360 K cascades annealed at 300 K. Data averaged over two data sets with standard deviation shown as shaded region.

Fig 13: Snapshots of a 5 keV Ba pka in YBa₂Cu₃O₇.

Fig 14: Extended defect region in the CuO-chain.

Fig 4: Plot showing the reduction in critical current with He irradiation at room temperature (red) and operational temperature (blue) (Iliffe *et al.* SUST 34 (2021) 09LT01).