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‘ HTS in the paths to fusion and to advanced particle physics
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Aim of the presentation

New challenges: irradiation, mechanical, electro-magnetic,
thermal-hydraulic behavior
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‘ Take-home message
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Paths to fusion (l)
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[“The global fusion industry in 2023%,
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Tokamaks

heliotrons

Alternative
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Configuration details
Operational method
Planned fusion fuel cycle
Public projects

Private companies [

Paths to fusion (l)
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General confinement method
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* HTS magnets are in the
plans of almost all the
MFE projects by
public/private
companies

e Benefit from what
particle physics
community has already
understood
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Paths to high-physics particles: the Muon Collider @CERN

Target and capture solenoid
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Final Cooling

h,':agr‘-e'[p: Field Modulus, T

MuCol HTS conductor
Operating current: 61 kA

t al., IEEE TAS, 21 (2011) 2340
Z 5, H.—'ll'T.'-'-'iE et al., SUST, 33 (2020) 11LT01

Collider Ring

Non-insulated HTS
modular solenoid

Large bore
(1.2m),
large heat
(4.1 KW),
and
radiation
(80 MGy)

Final cooling magnets
[Courtesy of B. Bordini]



HTS magnets for fusion: a perspective

New paradigms are emerging for HTS magnets:
* Not only Cable-in-Conduit concept (as for LTS magnets)
* Not only internal forced flow cooling (as for LTS magnets)

Girella

* Non-insulated tape layouts

* Increasing operating temperatures (= 20 K):
1) higher energy efficiency

2) different material properties (higher heat capacity of solids, lower cryogen
inventory)

Which are the new challenges that cannot be ignored in the
behaviour (= modelling = design) of the future HTS magnets?
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Particle-material parasitic interactions: fusion machines...

Coolant manifold
(Energy conversion)

« /neutrons

Plasma &
core radiation

First wall
4

[courtesy of KIT]

Vacuum vessel
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Degradation by neutron damages
(dpa) and sputtering

Degradation by helium
production

Degradation by neutron damages
(dpa) and thermal heating
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Particle-material parasitic interactions: fusion machines...

Plasma 2 &

core
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[courtesy of KIT]

« /neutrons

Coolant manifold
(Energy conversion)

Blanket
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replaceable

What do you see are the main challenges for fusion energy after 20302
(38 Reponses, non-reported answers indicate not seen as a problem/don’t know)

Fusion power efficiency; achieving high-enough gain
(high Q) fusion power

Plasma science
Cryoplants (heat management)
Plasma exhaust

Pulse Duration

Tritium self-sufficiency

Major challenge

Miner challenge

Integrated systems engineering

Full life-cycle issues (e.g. maintenance, waste,
recycling, decommissioning)

Funding

Geopolitics

[“The global fusion industry in 2023”, Fusion Companies Survey by the Fusion Industry Association ]




...and muon collider

; SRiRUSRID Target vessel
Solenoid With a beam power of 1.5 MW
* AIl HTS coil (in the straight part): 4.1 kW (the most loaded gets 1.5 kW)
» Very high dose on HTS = requires shielding

.40 cm lomzing dose (w 1 cm boron carbide), power = 1.0 MW
10) . . : . :
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Thermal (hydraulic?) behavior

* Beyond CICCs: Cooling paths (if any) not necessarily
follow the ampere-turn paths (transport current
direction not necessarily related to flow pattern)

* ForSS, Cu: ¢,@20k~10 X C,@45K
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* GHe @ 20K: operation at higher pressure to reduce
pumping power, but higher AT
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* Emphasis shifting from cryogens to solids
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Mechanical behavior -
More complex analysis due to: R o e
1) HTS tapes are fragile — tension & delamination | R
to be controlled g i
2) HTS tapes are anisotropic = need to compute =
and check principal stress components — not
Von Mises - at the tape level Tk
= Mechanical stresses producing irreversible /. reduction al
* Tensile longitudinal strain > 0.4 %' (600-800 MPa
depending on the Hastelloy fraction)
= Compressive stress in thickness direction > 400 MPa' :
* Compressive stress in width direction > 100 MPa’ ' 5
4 = Jensile stress in thickness direction: 10-100 MPa>—> 8
—— - Q@
LF '\Shear Stress > 19 MPa° ..
= Cleavage/Peel stress? (tensile at tape extremities)<1 MPa3
Fw -
[B. Bordini et al, EUCAS 2023] [L. Bottura, CHATS 2023]

2) Thermal gradients due to conduction cooling?
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Electro-magnetic behavior

* Tape/strand level

HTS tapes (in particular ReBCO tapes) exhibit different magnetization current pattern
with respect to LTS wires. In LTS wires, filaments magnetization currents in filament
coupling = 3-50 um. In 2" generation HTS tapes the currents flow over the whole tape

width (4-12 mm). - Tape (4 —10 mm) -

-2 el 1 A 1 A -1
} 2XMI domain: depends on the 2 -15 -1 05 0 0.5 1 1.5 2
metal tape (hardness, nature) x (mm)  [A. Musso, PhD Thesis, Bologna 2021]

> MI domain: influence of metal tape hardness

10°

10°
[C. Genot, PhD Thesis,

Modify and control R¢: .
CEA Saclay 2022] 10— * Cable/coil level

NI domain + MI CuBe,: variation between manufacturers The current transfer between HTS tapes in a Cable or
103 } Depends de:

Oxidation coil normally occurs over lengths and times >> between
102 ) Copper layer hardness strands in LTS cables. Measured contact resistances
N between HTS tapes span over many orders of
10 Composition of the tape . . . .
Soldered NI domain: eliminate the contact interface magnltUde (dependlng on the appllcatlon)'
Very high \ of Rt 12
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dE (mJ/cm**3)

Electro-thermal behavior

MuCol Target Solenoid Cable
100000

10000 | |NZ=1'm margin =2 high stability

INZ=0.1m * HTS tapes/cables have very large enthalpy

Cable+tHe ¢ Low quench propagation velocity = More
1000 enthalpy destructive damage in case of quench /
Cable complex detection with V measurements
100 enthalpy
* No practical use of quench heaters (high
i stability)
Operating current 61 kA . i L :
Overiing dempetiture 20K Coil protection is much more challenging
1 than for LTS magnets
0 5 10 15 20 25
Field (T)
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Electro-thermal-mechanical behavior
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* NI coils (beyond the CICC
concept) seem a good
option for quench
management = need for a
full 3D analysis of the
current (re)distribution,
with very long timescales

* Stress assessment needed

- Aggressive program on
solenoid model coils ongoing
for the MC final cooling
magnet will provide high

and ultra-high field
characterization of the HTS
critical surface and quench
detection and protection
solutions in a new regime.,



Particle-material parasitic interactions

it into thermal energy, which is then

r

MACROSCOPIC SCALE ) as heat in the superconductor

within the entire nuclear reactor core or
a significant portion of it

I/O excitation

Changes in the superconductive properties

Fluence effects /I%

- damanﬁ
MICRO/MESO SCALE

within specific regions of the reactor or

within the single cable
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Neutrons exchange kinetic energy, converting .
Flux effects o E 4 Cooling

- J
¥ ) : :
Secondary gammas Fa Neutron-Nucleus interactions can generate
wQ %Oy Bremsstrahlung losses or y— radiations after nucleus

SC

result from the cumulative effects of radiation properties

Jc

&

Tc
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HTS magnets in compact fusion reactors

The early consideration of all the
challenges in a whole should allow
defining what we miss:

* Material props (Jc) as a function of
the fluence

* A realistic operational space for
HTS high-field magnets, accounting
for constraints from:

* Mechanics

Quench
protection

Fragile
non-isotropic
SC tapes

Quench
detection

Thermal
stresses?

HTS
properties
degradation

* Protection » HTS (ReBCO) at 4.5 K and 20 K
° ff . — Stress limit
Energy e ICIency Protection limit
0 — Margin limit

Operation
at 20K

200 1

“nuclear”
heat load

150 4

Magnet Aperture [mm]

Allowed area

é 1‘0 1'2 l'q' 1.6 1’8
Bore Field [T] 16

[D. Novelli et al, EUCAS 2023]
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Beyond the tools for LTS magnets?

* Based also on what is already clear for the particle-physics community,
the design of new high-field HTS magnets is not just incrementally
based on the LTS magnet design = requires additional R&D

* The design approach requires to account for multi-physics aspects:

 particle-material interaction and mechanical analysis at the tape level (it was
mainly at coil level for LTS),

 electro-magnetic, thermal-hydraulic analysis at coil level (it was at strand/cable
level for LTS)

* Maybe the more relevant question becomes then:

Does the shift to HTS magnets for compact fusion reactors
call for the development of a new design approach?
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